39 research outputs found

    Soft Sphere Detection with Bounded Search for High-Throughput MIMO Receivers

    Get PDF
    We propose a soft sphere detection algorithm where search-bounds are determined based on the distribution of candidates found inside the sphere for different search levels. Detection accuracy of unbounded search is preserved while significant saving of memory space and reduction of latency is achieved. This probabilistic search algorithm provides significantly better frame-error rate performance than the soft K-best solution and has comparable performance and smaller computational complexity than the bounded depth-first search method. Techniques for efficient and flexible architecture design of soft sphere detectors are also presented. The estimated hardware cost is lower than the hardware cost of other soft sphere detectors from the literature, while high detection throughput per channel use is achieved

    Probabilistically Bounded Soft Sphere Detection for MIMO-OFDM Receivers: Algorithm and System Architecture

    Get PDF
    Iterative soft detection and channel decoding for MIMO OFDM downlink receivers is studied in this work. Proposed inner soft sphere detection employs a variable upper bound for number of candidates per transmit antenna and utilizes the breath-first candidate-search algorithm. Upper bounds are based on probability distribution of the number of candidates found inside the spherical region formed around the received symbol-vector. Detection accuracy of unbounded breadth-first candidate search is preserved while significant reduction of the search latency and area cost is achieved. This probabilistically bounded candidate-search algorithm improves error-rate performance of non-probabilistically bounded soft sphere detection algorithms, while providing smaller detection latency with same hardware resources. Prototype architecture of soft sphere detector is synthesized on Xilinx FPGA and for an ASIC design. Using area-cost of a single soft sphere detector, a level of processing parallelism required to achieve targeted high data rates for future wireless systems (for example, 1 Gbps data rate) is determined.NokiaNational Science Foundatio

    A General Hardware/Software Co-design Methodology for Embedded Signal Processing and Multimedia Workloads

    Get PDF
    This paper presents a hardware/software co-design methodology for partitioning real-time embedded multimedia applications between software programmable DSPs and hardware based FPGA coprocessors. By following a strict set of guidelines, the input application is partitioned between software executing on a programmable DSP and hardware based FPGA implementation to alleviate computational bottlenecks in modern VLIW style DSP architectures used in embedded systems. This methodology is applied to channel estimation firmware in 3.5G wireless receivers, as well as software based H.263 video decoders. As much as an 11x improvement in runtime performance can be achieved by partitioning performance critical software kernels in these workloads into a hardware based FPGA implementation executing in tandem with the existing host DSP.Nokia Inc.Texas InstrumentsNational Science Foundatio

    Architecture and Algorithm for a Stochastic Soft-output MIMO Detector

    Get PDF
    In this paper, we propose a novel architecture for a soft-output stochastic detector in multiple-input, multiple-output (MIMO) systems. The stochastic properties of this detector are studied and derived in this work, and several complexity reduction techniques are proposed to significantly reduce its cost from an architecture-implementation perspective. We also propose an efficient architecture to implement this detector. Finally, this detector is incorporated into an iterative detectiondecoding structure, and through simulations, it is shown that the overall frame error rate (FER) performance and complexity is of the same order as that of the conventional K-best sphere detector.Nokia CorporationXilinx Inc.National Science Foundatio

    Hardware/Software Co-design Methodology and DSP/FPGA Partitioning: A Case Study for Meeting Real-Time Processing Deadlines in 3.5G Mobile Receivers

    Get PDF
    This paper presents a DSP/FPGA hardware/software partitioning methodology for signal processing workloads. The example workload is the channel equalization and user-detection in HSDPA wireless standard for 3.5G mobile handsets. Channel equalization and user-detection is a major component of receiver baseband processing and requires strict adherence to real time deadlines. By intelligently exploring the embedded design space, this paper presents a hardware/software system-on-chip partitionings that utilizes both DSP and FPGA based coprocessors to meet and exceed the real time data rates determined by the HSDPA standard. Hardware and software partitioning strategies are discussed with respect to real time processing deadlines, while an SOC simulation toolset is presented as vehicle for prototyping embedded architectures.Nokia Inc.Texas InstrumentsNational Science Foundatio

    QRD-QLD searching based sphere detection for emerging MIMO downlink OFDM receivers

    Get PDF
    In this paper, a detection algorithm with parallel partial candidate-search algorithm is presented. Two fully independent partial search processes are simultaneously employed for two groups of transmit antennas based on QR and QL decompositions of the channel matrix. Proposed QRDQLD detection algorithm is compared with well-known QRD-M scheme adopted for several emerging wireless standards. Latency of the QRD-QLD candidate search is about twice as small for similar error-rate performance and for identical hardware resources. Total detection latency of QRD-QLD algorithm that also includes computation of soft information for outer decoder is also substantially smaller.Nokia CorporationNational Science Foundatio

    Parallel Searching-Based Sphere Detector for MIMO Downlink OFDM Systems

    Get PDF
    In this paper, implementation of a detector with parallel partial candidate-search algorithm is described. Two fully independent partial candidate search processes are simultaneously employed for two groups of transmit antennas based on QR decomposition (QRD) and QL decomposition (QLD) of a multiple-input multiple-output (MIMO) channel matrix. By using separate simultaneous candidate searching processes, the proposed implementation of QRD-QLD searching-based sphere detector provides a smaller latency and a lower computational complexity than the original QRD-M detector for similar error-rate performance in wireless communications systems employing four transmit and four receive antennas with 16-QAM or 64-QAM constellation size. It is shown that in coded MIMO orthogonal frequency division multiplexing (MIMO OFDM) systems, the detection latency and computational complexity of a receiver can be substantially reduced by using the proposed QRD-QLD detector implementation. The QRD-QLD-based sphere detector is also implemented using Field Programmable Gate Array (FPGA) and application specific integrated circuit (ASIC), and its hardware design complexity is compared with that of other sphere detectors reported in the literature.Nokia Renesas MobileTexas InstrumentsXilinxNational Science Foundatio

    High-throughput multi-rate LDPC decoder based on architecture-oriented parity check matrices

    Get PDF
    Publication in the conference proceedings of EUSIPCO, Florence, Italy, 200

    Reconfigurable Architectures for Wireless Systems: Design Exploration and Integration Challenges

    Get PDF
    Mobile devices are severely power and area limited due to battery capacity and system size. In many of these example systems, advanced features require computationally complex signal processing on high-speed data streams for enhanced networking capabilities. Thus, mapping high-level communication and networking algorithms to system architectures is a complex and challenging procedure. An important challenge is to characterize the area, time, and power requirements of these embedded system modules and to use this information effectively to determine the architecture of programmable, reconfigurable, and fixed-function modules. In this paper, we will focus on application examples in wireless networking which highlight these challenges in reconfigurable systems integration.Nokia CorporationTexas Instruments IncorporatedNational Science Foundatio

    Configurable LDPC Decoder Architecture for Regular and Irregular Codes

    Get PDF
    Low Density Parity Check (LDPC) codes are one of the best error correcting codes that enable the future generations of wireless devices to achieve higher data rates with excellent quality of service. This paper presents two novel flexible decoder architectures. The first one supports (3, 6) regular codes of rate 1/2 that can be used for different block lengths. The second decoder is more general and supports both regular and irregular LDPC codes with twelve combinations of code lengths −648, 1296, 1944-bits and code rates-1/2, 2/3, 3/4, 5/6- based on the IEEE 802.11n standard. All codes correspond to a block-structured parity check matrix, in which the sub-blocks are either a shifted identity matrix or a zero matrix. Prototype architectures for both LDPC decoders have been implemented and tested on a Xilinx field programmable gate array.NokiaNational Science Foundatio
    corecore